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ABSTRACT

3D echocardiography is one of the emerging real-time imag-
ing modalities that is increasingly used in clinical practice to
assess cardiac functions. It provides a more complete heart
representation for evaluation in comparison to conventional
2D echocardiography. However, one of the drawbacks is the
time it takes clinicians to navigate the 3D volumes to the
anatomy of interest and to obtain standardized views that are
similar to the 2D acquisitions. We propose an automated su-
pervised learning method to detect standard multiplanar refor-
matted planes (MPRs) from a 3D echocardiographic volume.
Extensive evaluations on a database of 326 volumes show per-
formance comparable to intra-user variability and the execu-
tion time of the algorithm is about 2 seconds.

Index Terms— Three-dimensional echocardiography,
multiplanar reformatted/reconstruction (MPR), standard views

1. INTRODUCTION

In the past few years, three-dimensional (3D) real-time imag-
ing systems have advanced rapidly and emerged in the mar-
ket. The acquisition methods are continuously improving in
terms of spatial and temporal resolutions. 3D echocardiogra-
phy is more and more used in clinical practice to evaluate both
morphology and pathology. Research studies have shown that
automated three-dimensional analysis provides more precise
information about the pathophysiology of the heart than con-
ventional analysis of 2D views and is of particular help for
volume and ejection fraction (EF) calculation [1, 2, 3, 4, 5].
However, interpretation and quantitative analysis of the 3D
volumetric data is more complex and time consuming than
that of conventional two-dimensional (2D) echocardiography,
which limits 3D echocardiography applications in clinical di-
agnosis. Therefore, automatic detection of anatomical struc-
tures in 3D volumetric data is extremely important to guided
navigation and to have a fast quantitative analysis.
Standard views are used to visualize the cardiac struc-

tures and are the starting point of many echocardiographic
examinations [6]. In a 3D volume, such views can be re-
constructed as multiplanar reformatted/reconstruction (MPR)
planes. Finding the standard 2D planes in a 3D volume can
improve consistency among users and can be used to adjust

the on-line aquisition parameters for better image quality. For
example, as shown in Fig. 1, all four chambers, i.e., left and
right ventricles, and left and right atria, are present in the api-
cal four chamber (A4C) view. In the apical three chamber
(A3C) view, the left ventricle, the left atrium, and the aorta
are present. Although 3D echocardiographic volumes pro-
vide much richer information of a heart than 2D echocardio-
graphic images, a heart can be located in different positions
with various orientations within each volume in different ex-
ams. Therefore, it is time consuming for users to navigate
through a 3D volume to search the target structure. A major
barrier for using 3D echocardiography for quantitative analy-
sis of heart function in routine clinical practice is the absence
of accurate and robust detection methods necessary to make
the analysis automatic [7].

Fig. 1. Standard planes in an echocardiographic volume.

In addition to the ultrasound operator’s capability, other
factors including transducer selection, instrument settings,
patient comfort and positioning, and the patient’s breathing
pattern, will affect the quality of the recording. This leads
to large appearance variations and inconsistent image qual-
ities (see Fig. 3 for examples), which makes the automatic
detection task much more difficult. Moreover, although the
volumes were captured through apical windows, the initial
configuration of planes significantly varies as demonstrated
in Fig. 4. To automate the clinical workflow and facilitate the
subsequent processing tasks such as endocardial wall motion
analysis, it is an essential component to automatically detect

1279978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



standard cardiac MPR planes from a 3D volume. In order
to achieve fast, accurate, and consistent MPR detection, we
propose a method and system that is able to detect MPR
planes from a 3D echocardiographic volume in a fully auto-
matic mode. Specifically, six major MPR planes as shown
in Fig. 1 are detected in the prototype system: (1) A4C: api-
cal four chamber plane; (2) A2C: apical two chamber plane;
(3) A3C: apical three chamber plane; (4) SAXB: short axis
basal plane; (5) SAXM: short axis middle plane; (6) SAXA:
short axis apex plane. To our best knowledge, this is the first
fully automatic MPR detection system on three-dimensional
echocardiography data.

2. METHODOLOGY

2.1. Knowledge-based Probabilistic Model

We address the problem of MPR plane detection from 3D
volumes by using a database-driven knowledge-based ap-
proach [8]. Knowledge is embedded in large annotated data
repositories where expert clinicians manually indicate the
standard MPR planes. Features that are relevant to the MPRs
are extracted and learned in a machine algorithm based on
the experts’ annotations, resulting in a probabilistic model
for MPRs, see Fig. 2. The algorithm uses the learned model
to search for targets (MPR planes) in the hypothesis space.
Online detection algorithm searches through multiple hy-
potheses to identify the ones with high probabilities.

Fig. 2. Probabilistic learning for AutoMPR. A hypothe-
sis space is constructed and learned for each standard MPR
plane.

2.2. Marginal Space Learning and Hierarchical Search

We consider each MPR plane not only in an abstract 2D do-
main, but a 3D volume sample, where three-dimensional con-
text information is preserved and guides the detection process.
MPR plane detection is to estimate the pose parameters for
each plane. The pose parameters of a 3D rigid body consists
of 9 components, including 3 translations (x, y, z), 3 orienta-
tions (e.g., Euler angles w.r.t. each axis), and 3 scales along
each axis. Because searching in a high resolution 3D volume
is prohibitive for online applications. For example, a volume
of 100 × 100 × 100 voxels will have 106 = 100 × 100 ×
100 hypotheses for position. If combining orientation and

scale, a combinatorial hypothesis search space expands dra-
matically. Therefore, we designed a series of detectors that
estimate plane parameters at a number of sequential stages
in the order of complexity, i.e., translation, orientation, and
scale, as the parameter degrees of freedom increase [9]. Dif-
ferent stages utilize different features computed from 3D vol-
ume data. Multiple hypotheses are maintained between al-
gorithm stages, which quickly removes false hypotheses at
the earlier stages while propagates the right hypotheses to the
final stage. Only one hypothesis is selected as the final detec-
tion result.
The plane detectors are discriminative classifiers that

are trained on the registered 3D echocardiographic volumes,
which are used to determine if a given sub-volume sample
is positive or negative. Positive/negative samples correspond
to correct/incorrect plane parameters (configurations). The
detectors are trained on a large number of annotated 3D
echocardiographic volumes. We control the training sets for
the detectors at different levels depending on the complex-
ity of the detection task. At the coarse level, the negatives
are far from the positives and randomly sampled across all
reasonable plane configurations, while maintaining a relative
large gap from the positives. At the fine level, negatives are
selected only within a neighborhood of the positives in ac-
cordance to the search strategy, while decreasing the gap in
between.
We use a probabilistic boosting tree (PBT) [10] for each

detector. The classifier is a tree-based structure with which
the posterior probabilities of the presence of the plane of in-
terest are calculated from given data. Therefore, each plane
detector not only provides a binary decision for a given sam-
ple, but also a confidence value associated with the decision.
The nodes in the tree are constructed by a combination of
simple classifiers using boosting techniques [10].
Each detector selects a set of discriminative features that

are used to distinguish the positive target from negatives from
a large pool of features. For the classifiers at the translation
stage, we choose Haar wavelet-like features [11], which are
calculated efficiently using integral image-based techniques.
Due to inconsistent imaging conditions of ultrasound in real
applications, we normalize the features within each sample by
subtracting the average and dividing the standard deviation.
For the classifiers at the orientation and scale search stages,
steerable features [9] are applied, because their computation
does not require volume rotation and re-scaling, which are
computationally expensive, especially when the hypothesis
search space is large.
To detect all 6 planes, we applied a coarse-to-fine strategy

through a multi-scale hierarchy as follows:

(1). An A4C detector is learned and applied at a coarse
level in a low-resolution volume (downsampled from
the original volume) to detect the A4C plane, which is
used to limit the search region for fine plane parameter
estimation.
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(2). Because the six target MPR planes have anatomic reg-
ularities with each other and with respect to the left
ventricle (LV), based on the A4C candidate detected
in step (1), we compute initial plane parameters (po-
sition, orientation, and scale) for A2C, A3C, SAXB,
SAXM, and SAXA based on empirical statistics of the
pose parameters for each plane relative to A4C, which
is pre-calculated from the annotations in the training
database.

(3). At higher resolutions, a plane detector for more accu-
rate parameter estimation trained for each MPR plane
is applied to search the best candidate only in a small
neighborhood around their initial detection results ob-
tained in step (2) to ensure efficiency.

3. EXPERIMENTS

We collected 326 echocardiac volume sequences. For each
sequence, the end diastole (ED) frame (a 3D volume) was ex-
tracted and added into our experimental database. In total,
there are 326 3D echocardiac volumes in our database. For
each volume, six standard planes (A4C, A2C, A3C, SAXB,
SAXM, and SAXA) are manually annotated by clinical ex-
perts and used as groundtruth for evaluation.
To measure the difference between two planes, two error

metrics are applied, i.e., angle and distance. The angle be-
tween two planes is defined as the angle between two plane
normals. The distance between two planes is measured as the
distance of an anchor on one plane to the other plane, where
the anchor is the LV center (for A4C, A3C, A2C, and SAXM)
or the intersection between the LV long axis and the MPR
(for SAXB and SAXA). Based on the groundtruth annota-
tions, the LV long axis is computed as the average of the two
intersections of A4C-A2C and A4C-A3C, and the LV center
is calculated as the intersection between the LV long axis and
SAXM.
A 4-fold cross-validation scheme was applied for evalua-

tion. The entire dataset of 326 volumes was randomly parti-
tioned into four quarters. For each experiment, three quarters
(244 volumes) were combined for training and the remaining
one quarter (82 volumes) was used as unseen data for testing.
In total, there are four experiments so that each volume has
been used once for testing. AutoMPR performance is sum-
marized based on all 4 folds and provided in Table 1. Ex-
amples of the detection results are shown in Figs. 3 and 4.
MPRs in 3D echocardiography data present ambiguities due
to data quality, leading to difficulties for accurate identifica-
tion. Fig. 5 gives visual examples of above-average detection
errors. Preliminary intra-user variability analysis yielded an
average angle error of about 8.2 degrees and average distance
error of about 3.2mm.

Table 1. 4-fold AutoMPR cross validation evaluation. Angle
difference is in degree and distance is inmm.

(a) Overall performance
Avg. angle error Avg. distance error

mean 11.3 3.7
std 8.0 2.1

median 9.3 3.3

(b) Performance breakdown (apical planes)
A4C A2C A3C

Angle Dist. Angle Dist. Angle Dist.
mean 13.2 3.5 15.2 2.9 14.5 3.4
std 12.5 3.4 13.0 2.8 13.2 3.9

median 10.4 2.7 11.6 2.2 10.9 2.3

(c) Performance breakdown (short axis planes)
SAXB SAXM SAXA

Angle Dist. Angle Dist. Angle Dist.
mean 8.2 3.6 8.2 4.3 8.2 4.5
std 6.2 3.1 6.2 3.5 6.2 3.5

median 6.8 2.9 6.8 3.7 6.9 3.7

4. CONCLUSIONS

We have presented a method and developed a fully automatic
system for detecting standard MPR planes from 3D echocar-
diac volumetric data. This automated system significantly re-
duces the burden of searching anatomic structures for human
echocardiography examiners across a large variety of differ-
ent volumes. With the detected standard MPRs, advanced
quantitative analysis can proceed automatically, such as ejec-
tion fraction analysis. A multi-scale hierarchical search strat-
egy is applied in the AutoMPR system. Experimental results
on a 326 volume database are promising.
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